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d Background and Aims Genetic structure and variability were examined in the only three extant populations of
the narrow-endemic tree Antirhea aromatica (Rubiaceae, Guettardeae), an endangered species of the tropical
forest of eastern Mexico. Patterns of genetic diversity within and among populations for adult plants and
seedlings were obtained.
d Methods Allozyme electrophoresis of 15 loci was conducted and the data analysed with statistical approxima-
tion for obtaining genetic diversity, structure and gene ¯ow.
d Key Results The mean expected heterozygosity (He) in the adult and seedling populations was 0´18 6 0´08 and
0´20 6 0´09, respectively. The genetic variation explained by differences among populations was 51 and 35 %,
for adult and seedling populations, respectively. On average, gene ¯ow between paired adult populations was
low (Nm = 0´26 6 0´09), compared with other trees from the tropical forest.
d Conclusions The results indicated that the populations evaluated have high genetic variability, compared with
other endemic and geographically narrowly distributed plant species, in areas with high levels of environmental
heterogeneity (e.g. tropical forests). The conservation implications of the results are discussed, and in this regard
it is proposed that A. aromatica should be considered as an indicator species with economic potential. It is
suggested that sustainable management practices should be implemented and that the areas where the species is
distributed should be declared a natural reserve to ensure the species conservation.
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INTRODUCTION

The genetic structure of populations refers to the distribu-
tion of genetic variation within and among populations, and
is affected by demographic factors (Antonovics and Via,
1987; Loveless and Hamrick, 1984) as well as evolutionary
processes (Wright, 1951). The genetic variation within a
population is considered to represent its evolutionary
potential (Wright, 1978), and the range of geographical
distribution is one of the major factors correlated with the
genetic variability of plant populations (Hamrick and Godt
1996a, b; Savolainen and Kuittien, 2000). Thus, genetic
variation has implications for conservation at the species
level (Holsinger et al., 1999; Lande, 1999), and the
assessment of genetic variability is the ®rst step in
evaluating the long-term conservation status of species in
natural conditions. This is particularly important in plant
species with low population sizes exposed to the effects of
inbreeding and genetic drift (Barrett and Kohn 1991;
Frankham, 1995).

Plant species with restricted geographical distributions
tend to have lower levels of genetic variation than their more
widespread congeners (Gitzendanner and Soltis, 2000).
However, high gene diversity has been reported for the rare

ferns Adenophorus periens (Ranker, 1994), and Polystichum
otomasui (Maki and Asada, 1998), the endangered tree
Caesalpinia echinata (Cardoso et al., 1998), an endangered
pine Pinus rzedowskii (Delgado et al., 1999), the rare
Mexican pinyon pine Pinus maximartinezii (Ledig et al.,
1999), the endemic Agave victoriae-reginae (MartõÂnez-
Palacios et al., 1999), three endemic plants from Florida
(Eryngium cuneifolium, Hypericum cumulicola and Liatris
ohlingerae; Dolan et al., 1999), the annual endemic Warea
carteri (Evans et al., 2000), the endemics Iris cristata and
I. lacustris (Hannan and Orick, 2000), the narrow and
endemic species Antirrhinum charidemi and A. valentinum
(Mateu-AndreÂs and Segarra-Moragues, 2000), the endemic
monoecious shrub Brongniartia vazquezii, of tropical dry
forests of Central Mexico (GonzaÂlez-Astorga and NuÂnÄez-
FarfaÂn, 2001), Viola palmensis endemic of Canary Islands
(Batista and Sosa, 2002), and the cycad Dioon edule of
eastern Mexico (GonzaÂlez-Astorga et al., 2003).

Conservation programs for long-lived tropical trees must
take into account the ecological and genetic relevance of
environmental conditions ¯uctuating over large periods of
time (Alvarez-Buylla et al., 1996b; Lande, 1999; Hedrick,
2001).

Antirhea aromatica (Rubiaceae, Guettardeae) is a
monoecious tree, of 6±15 m height and a diameter at breast
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height of 10±30 cm. It takes 7±10 years for the species to
reach maturity, and the plant's lifespan is approx. 150 years.
Local people of the region use the fruits and the bark of
A. aromatica as a natural remedy for dental diseases
(Castillo-Campos, 1995). Active components with anti-
septic, antioxidant and antibiotic principles have been
isolated from a congener, A. acutata (Lee et al., 2001).
The species A. aromatica is endemic to central Veracruz,
with a highly restricted geographical distribution. The
species has been registered only in the type locality area,
in Jalcomulco and Apazapan, Veracruz, from 350±500 m
a.s.l. (Castillo-Campos and Lorence, 1985). Antirhea
aromatica inhabits remnant patches of tropical lowland
rainforest (sensu Miranda and HernaÂndez, 1963) with a
population density of approx. 200 individual adults ha±1, and
these populations cover an area of approximately 20 ha
(Castillo-Campos, 1995). This species blooms from July to
September (43´4 6 7´2 ¯owers per plant) during the
summer. Its white aromatic ¯owers (6´4 6 0´3 cm long)
are visited by moths, bumblebees (Bombus sp.) and bats; the
seeds are dispersed by bats. The aim of the present study
was to determine the patterns of genetic variation and
differentiation among the three existing populations of
A. aromatica. Additionally, both adults and seedlings were
analyzed and compared. Finally, the population size of the
species and its fragmented distribution offers the oppor-
tunity to determine the relationship between the genetic
structure, population size and geographic isolation. It is
hypothesized that genetic diversity will be low and genetic
differentiation high, with a subsequent decrease in gene
¯ow of the extant populations.

METHODS

Study sites

The study was conducted during 1998±99, in the localities
of Jalcomulco and Apazapan (96°41¢±99°08¢W; 19°18¢±
19°27¢N) in central Veracruz, in Eastern Mexico (Fig. 1)
(Castillo-Campos, 1995). The study area is a fragmented
landscape of lowland tropical rainforest (sensu Miranda and
HernaÂndez, 1963) surrounded by roads, cultivated ®elds and
pasturelands. The climate is semi-warm humid [(A)C(m)]
following the classi®cation of KoÈeppen (1948), the mean
annual precipitation ranges from 1200±1500 mm, and the
mean annual temperature ranges from 22±24 °C (GarcõÂa,
1988).

Sample collection

Tissue sampling was done in the three extant populations
of Antirhea aromatica Castillo-Campos & Lorence in
Jalcomulco, Veracruz, Mexico. Populations are separated
by distances that range from 2´7±15´5 km. The sampled
populations of A. aromatica encompassed the total geo-
graphic range of the species (Fig. 1). Fully expanded young
leaves were collected from 40 reproductive individuals in
each population. Simultaneously, leaves of 40 seedlings of
each population were collected. This tissue was transported

in ice-®lled containers, and then stored in a freezer at ±70 °C
until extraction for electrophoretic analysis.

Electrophoresis

Multilocus genotypes of 40 mature individuals and 40
seedlings from each population were determined through
horizontal starch gel electrophoresis (12 % w/v). Allozymic
variation was scored at 15 loci for each individual plant,
nine of which were polymorphic: malate-dehydrogenase
(E.C. 1.1.1.37, loci Mdh1 and Mdh2), esterase (E.C. 3.1.1,
loci Est1, Est2 and Est3), phosphoglucoisomerase (E.C.
5.3.1.9, loci Pgi1 and Pgi2), glutamate oxaloacetate
transaminase (E.C. 2.6.1.1, locus Got), and phosphogluco-
mutase (E.C. 5.2.2, locus Pgm). The remaining six were
monomorphic: 6-phosphogluconate dehydrogenase (E.C.
1.1.1.44, locus 6Pgd), diaphorase (E.C. 1.6.99.-, loci Dia1
and Dia2), isocitrate dehydrogenase (E.C. 1.1.1.41, locus
Idh), leucine aminopeptidase (E.C. 3.4.11.1, locus Lap) and
peroxidase anodic (E.C. 1.11.1.7, locus Apx). The extraction
buffer (tris-HCl pH 7´5, sucrose, PVP-40, mercaptoethanol,
ascorbic acid, diethyldithiocarbamate, bovine serum albu-
min, sodium metabisulphite and sodium tetraborate;
Wendel and Weeden, 1989) was added to dissolve and
stabilize the enzyme extracts, which were stored on ®lter
paper wicks at ±70 °C until used for analyses. The buffers
(gel and electrode) used were histidine pH 5´7, and citric
acid (Soltis et al., 1983). Electrophoresis was carried out at
4 °C over 6 h (constant current of 70 mA, and voltage of
200 V).

F I G . 1. Geographical distribution of populations examined of Antirhea
aromatica in Veracruz, Mexico.
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Statistical methods

The bands from each allozyme system were assigned to
alleles and genotypes based on theoretical expectations and
observed banding patterns. The TFPGA 1.3 package
(Miller, 1997) was used to obtain the genetic estimators
from the data analysis. The genotypic frequencies obtained
were used to calculate observed mean heterozygosity (Ho)
and allelic frequencies. Allelic frequencies at each popula-
tion were used to estimate the mean number of alleles per
locus (A), the average proportion of polymorphic loci (P),
and expected mean heterozygosity (He), based on Hardy±
Weinberg expectations (Hartl and Clark, 1997). The
signi®cance of estimators was obtained by Monte Carlo
methods (Weir, 1990).

Partitioning of genetic variability was done by using
F-statistics (Wright, 1965, 1978), which were calculated
according to the formula of Weir and Cockerham (1984)
that estimates genetic structure by partitioning variation in
the same way as a regular analysis of variance. The q
statistic (analogous to Fst) estimates populations' diverg-
ence through allele frequencies, whereas f (similar to Fis)
and F (similar to Fit) estimate heterozygote excess (<0) and
de®cit (>0) relative to Hardy±Weinberg expectations in
local populations and the total set of populations, respect-
ively. To determine whether f and F estimations for each
locus were signi®cantly different from zero, Chi-square
statistics [c2 = F(2N) (k ± 1)] were obtained, with k(k ± 1)/2
degrees of freedom, where N is the sample size and k the
number of alleles (Weir, 1990). To determine the signi®-
cance of the q statistic per locus, the chi-square statistic was
used: c2 = (2N) q(k ± 1), with (k ± 1) (n ± 1) degrees of
freedom, where n is the number of populations (Workman
and Niswander, 1970). The con®dence intervals (at 95%) of
the F-statistics were obtained by bootstrapping over loci for
the multilocus estimate and jackkni®ng over populations for
the single-locus estimates (Weir and Cockerham, 1984;
Weir, 1990). The average gene ¯ow among populations
(Nm) was estimated from q-values, as q = 1/(4Nma + 1),
where a =[n/(n ± 1)]2 and n is the number of populations
(Crow and Aoki, 1984). Nm is interpreted as the number of
migrants per generation between two given populations
(Slatkin 1993, 1994).

RESULTS

Genetic variation

The average number of alleles per locus was 1´76 6 0´102
and 1´64 6 0´102 for adults and seedlings of A. aromatica,
respectively (Table 1). The t-test indicated no signi®cant
differences between averages of number of alleles per locus
among adults and progeny (t = 1´7, df = 44, P = 0´09).
Allelic frequencies for 15 loci were scored for each
individual plant (Table 1). In the adults, the percentage of
polymorphic loci per population varied from 33´3 %
(population 2) to 60 % (populations 1 and 3), with an
average of 51´1 %. In seedling populations, the percentage
of polymorphic loci varied from 46´6 % (population 3) to
60 % (populations 1 and 2), with an average of 55´5 %
(Table 2).

Observed mean heterozygosity was 0´14 6 0´04 (range
0´08±0´17) and 0´17 6 0´08 (range 0´07±0´23) for the adult
and seedling populations, respectively. Expected mean
heterozygosity was 0´18 6 0´08 vs 0´20 6 0´09, for the
adult and seedling populations, respectively (Table 2).

Genetic structure

The Wright's F-statistics, F (similar to Fit) and f (similar
to Fis), were positive and signi®cantly different from zero
for all polymorphic loci (P < 0´05) in both adult and
seedling populations, indicating inbreeding (Table 3).
Similarly, all polymorphic loci showed values of q (similar
to Fst) signi®cantly different from zero (P < 0´05). The mean
F was higher for the adult than for the seedling population
(0´64 6 0´049 vs.0´46 6 0´04; F(1,28) = 1330, P < 0´00001).
Similarly, the f-statistic was higher for adult than for
seedling populations (F(1,28) = 101, P < 0´00001) (Table 3).

The average genetic differentiation among adult popula-
tions (q = 0´51) was higher than for seedling populations (q =
0´35). Thus 51 and 35 % of the genetic variation for adults
and seedlings, respectively, is due to differences among
populations of A. aromatica (Table 3). Also, the exact tests
for population differentiation of Raymond and Rousset
(1995), indicated signi®cant differences among adult (c2 =
178´3; df = 18; P < 0´00001), and seedling (c2 = 161´2; df =
18; P < 0´00001) populations. The q-values were different
among loci in both populations (adults, range 0´47±0´54;
and seedlings, range 0´32±0´38), and suggest that genetic
drift and inbreeding have been the dominant differentiating
processes. Both estimations are signi®cantly different from
zero, and there were differences between them (F(1,28) =
688, P = 0´00001).

Gene ¯ow

Indirect estimates of gene ¯ow (Nm) for A. aromatica
indicate that an average of 0´26 6 0´08 migrant individuals
per generation between populations pairs. These are rela-
tively low values of gene ¯ow with respect to other plant
species with similar reproductive systems. The lowest Nm
value was obtained between populations 1 and 2 (Nm =
0´16) separated by 15´55 km, and the highest one between
populations 2 and 3 (Nm = 0´31) separated by 2´74 km.

DISCUSSION

Tropical endemic trees are vulnerable to forest fragmenta-
tion because of their low densities, complex demographic
dynamics, high genetic differentiation (q » 1), and self-
incompatibility systems (Bawa et al., 1985; Barrett and
Kohn, 1991; Alvarez-Buylla and Garay, 1994; Schemske
et al., 1994; Alvarez-Buylla et al., 1996b). Also, tropical
forest fragmentation is likely to decrease gene ¯ow, increase
inbreeding and therefore produce a high differentiation
among remnant populations (Alvarez-Buylla et al., 1996b;
GonzaÂlez-Astorga and NuÂnÄez-FarfaÂn, 2001). This would be
particularly the case for A. aromatica where one would
expect a low genetic diversity. Contrary to this expectation,
we found high levels of genetic diversity for A. aromatica,
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for both adults and seedlings. In fact, the values found in this
species are among the highest ones recorded for tropical
forest trees (Eguiarte et al., 1992; Alvarez-Buylla and
Garay, 1994; Cardoso et al., 1998; Loveless et al., 1998;
Lee et al., 2002; Ledig et al., 2002), and especially with
respect to those found in fragmented environments (Hall
et al., 1996; Cascante et al., 2002).

The mean percentage of polymorphic loci in A. aromatica
was higher (51´1 and 55´5 %, adults and seedlings,
respectively) than that reported for other long-lived peren-
nial and endemic plant species (48´1 %; Hamrick and Godt,
1996a). The mean expected heterozygosity within popula-
tions for A. aromatica was also higher (0´185 and 0´203,
adults and seedlings, respectively), than that reported for
other regionally distributed (sensu Hamrick and Godt,
1989), tropical long-lived trees, and even higher than those
for temperate long-lived trees (0´125 and 0´145, respect-
ively; Hamrick et al., 1994). It is also higher than those of
other long-lived perennial and endemic species (0´105;
Hamrick and Godt, 1996a). This shows that A. aromatica
has exceptionally high genetic diversity and variability,
despite its low population density (cf. Young et al., 1996;
GonzaÂlez-Astorga and NuÂnÄez-FarfaÂn, 2001). This phenome-
non is likely to be associated with the reproductive system.
It has been reported that other Rubiaceae have a pre-zygotic
self-incompatibility crossing system (Anderson, 1973;
Richards, 1997; Faivre and McDade, 2001) that reduces
inbreeding, and loss of genetic variation. The heterostyly
observed in A. aromatica (J. GonzaÂlez-Astorga, personal
observation) denotes the existence of a self-incompatibility
reproductive system (Sobrevila et al., 1983; Richards and
Kortur, 1993; Riveros et al., 1995), even though outcrossing
rate [t = (1 ± f)/(1 + f); sensu Allard et al., 1968] in adult

TABLE 1. Allelic frequencies of 15 enzymatic loci in
individuals (adults and seedlings) of three populations of

Antirhea aromatica in Veracruz, Mexico.

Populations

Locus Allele 1 2 3

Mdh1
Adults a 0´1714 0´1471 0´7778

b 0´8286 0´0588 0´0370
Seedlings c 0´0000 0´7941 0´1852

a 0´6282 0´1719 0´9375
b 0´3718 0´1094 0´0625
c 0´0000 0´7188 0´0000

Mdh2
Adults a 0´8649 0´1029 0´2115

b 0´1351 0´0588 0´0769
c 0´0000 0´8382 0´7115

Seedlings a 0´6875 0´1000 1´0000
b 0´3000 0´2333 0´0000
c 0´0125 0´6667 0´0000

Est1
Adults a 0´3194 0´9559 0´8889

b 0´0833 0´0441 0´1111
c 0´5972 0´0000 0´0000

Seedlings a 0´7143 0´3750 0´0667
b 0´2857 0´6250 0´9333

Est2
Adults a 0´5294 0´9722 0´6800

b 0´4706 0´0278 0´3200
Seedlings a 0´7639 0´1452 0´8667

b 0´2361 0´8548 0´1333
Est3

Adults a 0´1111 0´0714 0´5000
b 0´8889 0´9286 0´5000

Seedlings a 0´6447 0´3833 0´8235
b 0´3553 0´6167 0´1765

Pgi1
Adults a 0´1351 0´9857 0´3000

b 0´8649 0´0143 0´1200
c 0´0000 0´0000 0´5800

Seedlings a 0´5811 0´1452 0´9375
b 0´4189 0´8548 0´0625

Pgi2
Adults a 0´8243 0´9286 0´2500

b 0´1757 0´0714 0´7500
Seedlings a 0´6389 0´3833 0´0938

b 0´3611 0´6167 0´9063
Got

Adults a 0´7027 0´6250 0´3077
b 0´2973 0´3750 0´6923

Seedlings a 0´6410 0´6563 0´8000
b 0´3590 0´3438 0´2000

Pgm
Adults a 0´0735 0´9714 0´2222

b 0´9265 0´0286 0´2593
c 0´0000 0´0000 0´5185

Seedlings a 0´5921 0´2813 0´9706
b 0´4079 0´7187 0´0294

6Pgd
Adults a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Seedlings a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Dia 1

Adults a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

Seedlings a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

TABLE 1. Continued

Populations

Locus Allele 1 2 3

Dia 2
Adults a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Seedlings a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Idh

Adults a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

Seedlings a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

Lap
Adults a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Seedlings a 1´0000 1´0000 1´0000

b 0´0000 0´0000 0´0000
Apx

Adults a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

Seedlings a 1´0000 1´0000 1´0000
b 0´0000 0´0000 0´0000

Mean no. of alleles/locus (6 SD)
Adults 1´67 (0´617) 1´73 (0´704) 1´87 (0´834)
Seedlings 1´67 (0´617) 1´73 (0´704) 1´53 (0´516)
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populations of A. aromatica indicates that 57 % of the
offspring are a product of exogamy. This result contrasts
with an average outcrossing rate of 88 6 12 % for of 30
species of tree and shrubs reported by Eguiarte (1990), and
90 6 5 % reported by Boshier (2000) for seven tropical
trees. However, because the t-value is an indirect estimate,
caution has to be taken in its interpretation (Ledig et al.,
1997).

Pollinator ef®ciency allows the establishment of a stable
genetic neighbourhood supporting an adequate genetic
variability within populations, and is re¯ected in the high
genetic diversity found in A. aromatica populations (P =
51´1 and He = 0´185 in adults, and P = 55´5 and He = 0´203
in seedlings).

The inbreeding values found in A. aromatica were high
when compared to other tropical species (Eguiarte, 1990;
Boshier, 2000). These values were signi®cantly greater in
adults that in seedlings. The relatively low inbreeding
observed in seedlings suggests that the individuals sampled
came from an exceptional fruit-setting year for many adult
trees, which could be due to a random sampling effect from
the gene pools among cohorts (Husband and Schemske,
1996), or a past cornucopia effect (cf. Sazima et al., 2001;
Leite and da Encarnacao, 2002).

On the other hand, the high genetic differentiation found
among populations (q = 0´51, adults; and q = 0´35,
seedlings) may be due to two processes: in the immediate-
term to reduced pollinator-ef®ciency as a result of ¯owering
asynchrony between populations (cf. Murren, 2002), and in
the longer-term to reduced spatial distribution and increased
population isolation due to fragmentation (Young et al.,
1996), which in turn could restrain gene ¯ow and disrupt the
demographic structure of formerly stable populations
(Loveless and Hamrick, 1984). Alternatively, the reduced
gene ¯ow detected in A. aromatica adult populations may be
due to low seed dispersal ef®ciency. Frugivore bats deposit
massive amounts of seeds of the same mother tree under
very few resting trees, such as Brosinium alicastrum,
Bursera simaruba, Hyperbaena mexicana, Manilkara
zapota and Protium copal (Castillo-Campos and Lorence,
1985; Castillo-Campos, 1995). Although we did not

evaluate gene ¯ow in seedlings, we would expect a similar
pattern to the one observed in the adults if we assume that
most of the seedlings would eventually reach maturity.

In conclusion, our results show that the three extant
populations of A. aromatica present a relatively high genetic
diversity when compared with other plants with similar
attributes. The conservation implications for the species are
evident, since the species has only been found in three forest
patches of a very scarce vegetation type in Mexico. In this
region the human population has continuously increased
since the 16th century (de la Madrid et al., 1988). This has
resulted in the extensive cultivation of agricultural crops,
initially such as sugar cane and later mango and coffee
plantations, with the subsequent fragmentation of the
original distribution range of A. aromatica (Castillo-
Campos, 1995). The isolation and reduction of the species'
populations have reduced intrapopulation gene ¯ow and
have generated a systematic process of genetic isolation.
However, our results suggest that A. aromatica has
genetically viable populations, and at present the main
threats are primarily associated with changes in the
environment due to human activities.

We suggest that this tree species should be considered an
indicator species (sensu Noss, 1990) with unexplored
economic potential (Given, 1994). The preservation of the
extant populations of A. aromatica through the creation of a
nature reserve would be ideal. In addition, we would
recommend the implementation of management practices
by local people in order to reinforce conservation of the
species, such as is the case for the conservation of the cycad
Dioon edule by means of sustainable utilization in other
regions close to our study area (Vovides and Iglesias, 1994;
Vovides et al., 2002).
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